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Using a series of fast-cooling protocols we have probed aging effects in the spin-glass state as a function of
temperature. Analyzing the logarithmic decay found at very long-time scales within a simple phenomenologi-
cal barrier model leads to the extraction of an effective fluctuation time scale of the system at a particular
temperature. This is the smallest dynamical time-scale defining a lower cutoff in a hierarchical description of
the dynamics. We find that this fluctuation time scale, which is approximately equal to atomic spin-fluctuation
time scales near the transition temperature, follows a generalized Arrhenius law. We discuss the hypothesis
that, upon cooling to a measuring temperature within the spin-glass state, there is a range of dynamically
inequivalent configurations in which the system can be trapped, and check within a numerical barrier model
simulation, that this leads to subaging behavior in scaling aged thermoremanent magnetization decay curves, as
recently discussed theoretically [P. Sibani and G. G. Kenning, Phys. Rev. E 81, 011108 (2010)].
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I. INTRODUCTION

Systems far from equilibrium display a range of interest-
ing properties that are similar for what appear to be very
different situations. Spin glasses are prototypical nonequilib-
rium systems that provide an interesting and accessible ve-
hicle for the investigation of nonequilibrium statistical me-
chanics. Among the most striking properties of spin glasses
are the time-dependent dynamics. Measuring time-dependent
variations in the magnetization, as a function of temperature
within the spin-glass state, allows a probe of accessible
phase space. This phase space is characterized by highly de-
generate, but distant, free-energy minima. In previous stud-
ies, many similarities have been found for measurements
over a wide range of temperatures. For example, aging oc-
curs at all temperatures below T,, the spin-glass transition
temperature.' The aged data, at different temperatures, also
have some differences which, although subtle, require further
study. These nonequilibrium properties are directly related to
the underlying phase- and real-space structures of the sys-
tem.

The dynamics of complex systems are known to depend
strongly on the initial conditions,*~® defined as the state of
the sample at the time the experiment begins, i.e., t=0 s at
the beginning of the isothermal aging process or alternatively
at the end of the quench. For spin glasses, the initial condi-
tions depend on the thermal history occurring in the rela-
tively short-time period starting when the sample tempera-
ture crosses 7, and ending when the measurement
temperature 7,, is reached. We report in this paper aging
measurements using the thermoremanent-magnetization
(TRM) decay for a range of measuring temperatures below
T,. The decay is measured at times ¢>1f,,, where 1, is the
waiting time, defined as the interval between the time when
the sample reaches the measuring temperature, 7,,, and the
time when the magnetic field, in which the sample is cooled
through the transition temperature, is cut to zero. The obser-
vation time f,,=t—1,, is the time during which the data are
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taken. This quantity is traditionally called ¢ and is used an
independent time variable for TRM measurements.

In a previous paper’ we found, using a fast-quench-
cooling protocol with “zero additional waiting time”
(ZTRM), that the ZTRM decay showed a fairly standard
TRM-like decay with a small effective waiting time
(=19 s) which was associated with the cooling protocol.
After several thousand seconds however, the ZTRM became
logarithmic in time out to 10° s, the longest time measured.
Repeating the same procedure, but adding a short waiting
time after the zero waiting time protocol, the ¢, dependent
part of the decay ended at a time significantly longer than
that found from the zero waiting time protocol but neverthe-
less ultimately decayed into the very same logarithmic time
dependence. Subtraction of this logarithmic term from the
long waiting time TRM decays (where scaling holds) utterly
destroys the ability to scale the decay curves, implying that
the logarithmic decay is not an additive term. These two
empirical findings suggest that the states associated with the
logarithmic decay are not an independent contribution to the
magnetization decay but are intrinsic to the aging curves
themselves. It was also shown that a hierarchical barrier
model simulation with a uniform initial-state distribution
produced a series of TRM decays (for different waiting
times) that decayed into a common waiting time-independent
logarithmic decay. The same conclusion was reached in a
theoretical model® where the disappearance of the t,, depen-
dence of the TRM decay and subaging behavior result from
heterogeneity of the initial configuration. The concept of spa-
tial heterogeneity with a distribution of time scales is not
new. Chamberlin® has observed nonresonant spectral hole
burning in an AuFe(5%) spin-glass sample. He found that the
decay observed after applying large-amplitude low-
frequency magnetic fields implies a distribution of relaxation
times corresponding to a heterogeneous system composed of
many domains, each with its own characteristic temporal be-
havior. Montanari and Ricci-Tersenghi'® have applied micro-
scopic fluctuation dissipation relations to a given disorder
realization of a highly frustrated ferromagnetic Ising model.
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They find that single spins can exhibit heterogeneity of time
scales. In this paper we apply the concept of heterogeneity to
the barrier model of spin glasses through the imposition of
an initial distribution of states with each state corresponding
to an independent domain.

Numerical studies of multivalley energy landscapes of
complex model systems, including Edward-Anderson spin
glasses,'"13 have charted out the “shape” of landscape val-
leys, i.e., regions of phase-space enclosing local energy
minima. Defining for convenience the energy of a specific
local minimum to be zero, the number of microscopic con-
figurations D(E) within an interval of width dE around en-
ergy E was evaluated by exhaustive enumeration and other
techniques. In most cases, this so-called local density of
states has, for a range of E values, a near exponential growth
as a function of E, i.e., D(E) = c exp(E/E,;), where ¢ and E,
are constants. The parameter E, has the role of a local “tran-
sition temperature:” for 7> E,,, the valley in question is not
thermally accessible since the large number of configurations
near its rim creates a “top heavy” Boltzmann quasiequilib-
rium distribution. In this regime, the thermalization process
roams freely through the states near the rim of the valley.
When T<E,, the valley begins to act as a trap, as the con-
figurations of low energy then carry a large probability. In-
terestingly, the values found numerically for E, for the
Edwards-Anderson spin glass are close to the critical tem-
perature of the model.'>'* The numerical results just de-
scribed were obtained for models of relative small size, and
are applicable to the localized and bounded regions of a
spin glass which are in a state of local thermal equilibrium,
i.e., thermalized domains well known from numerical
investigations.!> Assuming that spatially bounded regions
with a near exponential local density of state exist in a spin
glass, a dynamical “phase transition” occurs as the tempera-
ture decreases below the transition temperature, whereby a
hierarchically structured barrier space emerges for the vol-
ume. At the end of the quench, and the beginning of the
isothermal aging process, several domains will be formed,
each characterized by a maximum barrier. The system as
whole is then characterized by an initial barrier distribution,
which underlies the spatial heterogeneity of the system.
Within each domain, the current configuration will be
trapped in the hierarchy at a position mirroring the random
configuration of the system right above the transition and
hence a position which appears random in relation to the
hierarchical barrier structure. It is plausible that this process
repeats itself as the temperature is lowered leading to a con-
tinuum of phase transitions as the temperature decreases. The
free-energy barriers within the space are strongly tempera-
ture dependent increasing rapidly in size as the temperature
is lowered in the spin-glass phase. As the temperature de-
creases large barriers grow very large, effectively making
regions of phase space inaccessible to each other while
smaller barriers grow and replace larger barriers maintaining
the hierarchical structure at each temperature. These barriers
grow very fast as the temperature is reduced. For example, if
we apply the relationship derived in Lederman et al.'® [Eq. 8,
using their values for the reduced temperature coefficients a
and b] to our sample at 0.837,/T, (26 K) we find that a
reduction in temperature of AT=0.1K is sufficient to in-
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crease the small barrier, associated with the cooling process,
to a barrier size larger than the large barrier, associated with
the time at which the TRM vanishes in isothermal aging at
T,,- Hence, a portion of phase space which essentially looks
flat at T,,+AT develops a full hierarchy of barriers when
cooled to T,,. As the temperature decreases from 7,,+AT to
T, the state gets trapped in some valley of the barrier space
and can migrate out of this portion of the space only if the
surrounding barriers never grow larger than the barriers as-
sociated with the cooling time scale. As the measuring tem-
perature is approached the barrier space at that particular
temperature unfolds and within a single-particle picture the
system enters and occupies a single state within the barrier
space. There is no a priori reason for the occupation of any
particular initial state other than the constraints due to grow-
ing barriers presented in the above arguments. In a large
system composed of many volume limited independent do-
mains, the initial-state occupations of each domain, would on
average be random producing a uniformly distributed aver-
aged initial state, leading to a logarithmic decay for r>1,,.7%
If the fluctuation time scale of the system is small and the
time for hopping over the largest adjacent barrier associated
with that particular state (i.e., the local barriers confining the
state) is much less than the waiting time then full aging
follows. If time for hopping over the smallest adjacent bar-
rier is much greater than the waiting time then the state is
effectively frozen and no aging would be observed. These
states would however decay for measuring times > t,,.

In Sec. II, we report TRM measurements made at a series
of temperatures below T,. In Sec. IIl we reanalyze the
temperature-dependent ZTRM decays obtained’ using rapid
cooling protocols at a series of temperatures below the spin-
glass transition temperature 7,. Finally we use the experi-
mental results of Secs. II and III to determine parameters
used to produce a series of barrier-model simulations of the
temperature-dependent TRM decays. We then compare the
scaling behavior of the experimental and simulation data.

II. TEMPERATURE-DEPENDENT TRM DATA

In a previous paper’ the results of various temperature-
quenching protocols were reported at 7=26 K or T,
=0.83T, for CujgsMng 5. We now examine other measure-
ment temperatures. Previous studies'™ using conventional
cooling techniques, have found the scaling parameter w (de-
termined by scaling the data with an effective waiting time
t#) to be relatively constant (approximately ©=0.9) over the
temperature range 0.47,—0.97,. Outside of this temperature
range, u decreases. We have repeated our decay experiments
(using similar fast-cooling protocols) at the same waiting
times as before but now at different temperatures in order to
examine the temperature-dependent behavior under more
controlled conditions.

Starting from the same high temperature, 7),=35 K, the
sample is then rapidly cooled through the transition tempera-
ture 7,=31.5 K to a measuring temperature 7,,. At any par-
ticular measuring temperature a full range of TRM experi-
ments were performed with waiting times ranging from 50 to
10 000s. Four different measuring temperatures were ex-

014424-2



TEMPERATURE DEPENDENCE OF EFFECTIVE...

0.50

0.454 B
0.404
0.354
o 0.304

Z 0251

=
0.201
0.154
0.10 Jem===

0.05

10° 10 10 10° 10 10°
Time (seconds)

FIG. 1. Experimental TRM curves of CujgyMng o using fast-
cooling protocols at four different temperatures. Each set of decay
curves at given temperature display TRM decays for waiting times
of t,,=50, 100, 300, 630, 1000, 3600, and 10 000 s. In each series
the 50 s curve is the bottom curve and the magnetization increases
systematically for increasing waiting time to the uppermost 10 000
s curve. The time on the x axis begins after the magnetic field is
cutoff.

plored: 7,,=12.6, 18.9, 28.9, and 29.9 K, corresponding to
reduced temperatures units T,:Tm/Tg:0.4, 0.6, 0.9, and
0.95, respectively. The effective cooling times for the new
temperatures are similar to the fast-cooling protocol em-
ployed for the 0.837, study (i.e., =20 s). The cooling
rate was however increased from 1 to 2 K/s for the lower
temperatures.

Figure 1 shows the thermoremanent-magnetization-decay
curves for different temperatures spanning the range of tem-
peratures we probed. It can be observed, as has previously
been observed” that there are qualitative similarities for ag-
ing data at different temperatures. There are however several
significant differences. To begin with, the width of the de-
cays (over the entire span of waiting times) for the two sets
of data on the outer temperature ranges, 0.957,-0.4T,, is
slightly smaller than the width of the decays for the tempera-
tures in the intermediate region. For all of the decays, at a
particular measuring temperature, the magnetization values
at the observation time of .5 s are similar but show a small
increase as the waiting time increases. The curves then sepa-
rate and at very long times appear as if they are going to
come back together. In a previous paper’ we showed that the
curves actually recombine, within experimental observation
times, for very short waiting times (7, <45 s). For the wait-
ing times used in this study, the recombination of the long
waiting-time curves is clearly outside of experimental mea-
suring times. A second and more obvious difference is the
magnitude of the initial remanence for each temperature. As-
suming similar behavior for all of the temperatures the in-
creased remanence suggests that, as the temperature is low-
ered, the logarithmic term would extend over a much longer
time scale and make up a significantly larger proportion of
the total remanence. For the high-temperature data the aged
term is the majority of the remanence.
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FIG. 2. (Color online) Fit of normalized ZTRM curves. The
horizontal lines correspond to the value of M, determined from Fig.
1. The time on the x axis begins after the magnetic field is cutoff.
The 0.67, data we did not have a 10° s ZTRM curve. A reasonable
logarithmic extrapolation from a shorter time measurement was ob-
tained by observing the systematic trend in the slope of the loga-
rithm from a nearby 10° s ZTRM curve at 0.7T,. The straight-line
fit to the 0.957, data is from Ref. 5 (data lost). TRM decays were
not measured at 0.77, so no M, value is implied.

III. ANALYSIS OF ZTRM CURVES

We start by reanalyzing some previously published data.’
Figure 2 is a plot of ZTRM decays measured out to 10° s for
four temperatures and out to 10° s for one temperature, i.e.,
T=0.6T,. This data shows a long-time logarithmic tail from
approximately 6X10® s out to 1X10° s for each of the
temperatures (excluding 0.67,). This tail appears to begin
after the 7, dependence of the cooling protocol comes to an
end. Within the barrier model’” we observe this behavior of
aging decay giving way to a logarithmic decay when a uni-
form distribution is utilized. The extrapolation of the loga-
rithmic term to zero magnetization is an intriguing result.
The uniform distribution within the barrier model suggests
that aging can occur with waiting times at least up to a maxi-
mum time, 7,,,, which is associated with the maximum bar-
rier setup during the cooling process. Aging may still occur
after this time if the domains and hence the barrier space
continues to grow during the aging time. If the waiting time
is significantly less than the maximum time then the aging
curves will eventually decay into a common logarithmic de-
cay. This result implies that even though time scaling may
occur in the usual aging regime, time scaling eventually
breaks down as the logarithmic decay is entered.

We continue with a natural extension of this analysis. In
experimental ZTRM or TRM experiments, the cooling pro-
tocol imposes its own aging. Therefore the experiments
never start with a pure nonaged distribution of states. It is
well known from Field-Cooled/Zero-Field-Cooled (FC/ZFC)
magnetization experiments that the remnant behavior is very
large at low temperatures and decreases to zero at the tran-
sition temperature. It is within this remanence that aging be-
havior is observed. A TRM experiment begins by cooling the
sample through the transition temperature along the field-
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cooled curve and then, after waiting a time ¢, the field is
dropped to zero. There is a rapid decrease in the magnetiza-
tion due to the stationary magnetization decay. The station-
ary term is large and rapid with most of the decay occurring
well before the measuring time begins in TRM measure-
ments. The magnitude of the stationary term can be observed
in Fig. 1. Before the TRM decay begins, there is an approxi-
mately 60% drop in the Field Cooled (FC) magnetization at
0.4T, extending up to an approximately 90% drop in the FC
magnetization at 0.95T,. If the stationary decay were instan-
taneous then the magnetization would drop from Mgc to
some value M, after which aging would then proceed. One
can get a reasonably good estimate of M, from the TRM data
displayed in Fig. 1. The t,,=10* s waiting-time curve is quite
flat in the short-time regime. There is a slight slope in this
time regime but it is likely that a portion of this is due to the
effects of the stationary term. A reasonably good estimate of
M, can therefore be found from a magnetization value just
slightly greater than the shortest time value of the 10* s
TRM decay. This is the estimated value of the magnetization
at which aging begins. The question can then be asked “what
is the time scale at which aging begins.” While, experimen-
tally we cannot produce an idealized starting state after the
quench, a uniform distribution within the barrier model of-
fers a direction. If we began with a uniform distribution and
looked at the decay with #,=0 s we would find that the
decay would be logarithmic starting at a time associated with
the smallest barrier. The time for hopping over this smallest
barrier is effectively the fluctuation time of the system at any
particular temperature. In Fig. 2 we extrapolate the logarith-
mic term through short-time scales to the estimated value of
the initial magnetization M. This was done for all tempera-
tures at which we had a reasonable value of M,. The fluc-
tuation time at each temperature is read out as the intersec-
tion point of the corresponding curve. Remarkably these
fluctuation times can be well fit by a straight line on a log-
linear plot, i.e., by an Arrhenius function

T=1, exp@—?. (1)

The extrapolation of the line fit to the fluctuation times
(Fig. 2), to zero magnetization, produces an effective fluc-
tuation time scale at the transition temperature. The value
obtained of 7,~3 X 107!? s corresponds to time scales that
might be expected for atomic fluctuations. A rapidly chang-
ing fluctuation time scale, as a function of temperature,
coupled with the continuum of time scales associated with
the barrier space could explain the glassy dynamics associ-
ated with the spin-glass phase.!” At this point, the relation-
ship between this minimum effective time scale for the aging
component and critical fluctuations is unclear.

Within this simple model, we are arguing that each do-
main has a large distribution of time scales (represented by a
hierarchical barrier structure) and heterogeneity, at a particu-
lar temperature, is determined by the initial starting-time
scale for a particular domain. The onset of the phase transi-
tion is implied by ergodicity breaking and therefore diffusion
within a hierarchical barrier space describes aging dynamics.
In Fig. 2 it can be observed that 7,,,, (as well as 7,) decrease
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as the transition temperature is approached. It will be inter-
esting to observe whether this difference between the maxi-
mum time and the fluctuation time vanishes at the transition
temperature (i.e., Ty,,x—7,—0 s as T—T,). If this occurs,
then as the temperature is lowered through the transition
temperature, the spin-glass state would appear to evolve (in
temporal range) continuously out of the paramagnetic phase.
This type of continuous and subtle transition would help ex-
plain the lack of any observed discontinuity in the specific
heat, at the transition temperature. At this stage, this type of
transition is only a conjecture and clearly in need of further
experimentation.

IV. SIMULATIONS

In this section we perform barrier-model simulations us-
ing experimentally determined parameters. In general, the
barrier model has four parameters. The first parameter « de-
termines the linear growth rate of the barriers as a function of
Hamming distance and is effectively the size of the smallest
barrier. This parameter therefore also defines a minimum or
fluctuation time scale 7,. The second parameter N is the
number of significant barriers in the system where Ne is the
size of the largest barrier and defines .. The third param-
eter r is related to the branching ratio and the final parameter
is the value of the initial magnetization, M. For more details
of the barrier model, see Ref. 18. In the Appendix we show
that there is a large region of @ and r over which simulated
TRM experiments exhibit behavior similar to real systems.
For this study we have chosen values of @=0.4 and r=1.15.
These values were picked somewhat arbitrarily from the
range of values which exhibit proper diffusion behavior (Fig.
5) but were mainly chosen because diffusion on the time-
scale probed occurs over several hundred barriers. Once r
and « were chosen, N was chosen so that 7,,,, coincided with
the maximum time found from the extrapolation of the ex-
perimental logarithmic term to zero magnetization. This also
has the effect of setting the fluctuation time scale 7,,. Finally,
the integrated value of the uniform barrier distribution was
set to M,. Figure 3 displays the simulated TRM plots with
the experimental parameters.

We can see from Fig. 3 that the barrier model gives a
reasonably accurate representation of the experimental data.
There are some significant differences however and some
important similarities. One important difference between
Figs. 3 and 1 is that the experimental data in the short-time
regime has a slight slope to it whereas the simulations re-
sults, especially for the large waiting times, are fairly hori-
zontal. Some of this difference may be due to the effect of
the stationary term on the experimental data at short-time
scales. A second important difference is that the range of
simulated TRM decays appears to be slightly broader, for
each temperature, than the range of the corresponding ex-
perimental data. There are also some interesting similarities.
To begin with the set of waiting-time-dependent curves taken
at the extreme temperatures 0.47, and 0.95T,. appear less
broad over the range of waiting times then the intermediate
temperatures 0.837, and 0.67,. The similarities and differ-
ences are intriguing and we extend our analysis to include u
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FIG. 3. Barrier-model simulation decays TRM decays of four
different temperatures 0.47,, 0.6Tg, O.83Tg, and O.95Tg using ex-
perimental parameters. Each set of decay curves at given
temperature-display simulation TRM decays for waiting times of
t,=32, 100, 320, 1000, 3200, and 10 000 s. In each series the 32 s
curve is the bottom curve and the magnetization increases system-
atically for increasing waiting time to the uppermost 10 000 s curve.

The time on the x axis begins after the magnetic field is cutoff.

scaling of both the experimental and the simulation data to
further probe the results. Scaling analyses for both the simu-
lated and experimental data are presented in Fig. 4.

The experimental values of u, using the fast-cooling pro-
tocol, follow a similar pattern to those previously found in
the original analyses of scaling behavior in spin glasses.!-
The u values are however slightly higher at all temperatures.
This result has previously been explained by Parker et al.® It
is likely that the smaller u values observed for the highest
and lowest temperatures reflect the apparent narrowing of the
decay set at 0.47, and 0.957,. The implementation of u scal-
ing is somewhat subjective. It is clear that once the waiting-
time-independent regime is reached (the logarithmic term),
any type of waiting-time-dependent scaling will break down.
Therefore neither the experimental or the simulation data can
be scaled over the entire time range. The w values deter-
mined from both experiment and simulations are found from
scaling the largest waiting-time curves (as previously
discussed®). The measuring-time region of the experimental
data, obtained for large waiting-time regime, falls within the
aging regime of the data and therefore reflects a situation
similar to the previous implementations of this analysis. For
experiment, the best u value is obtained by scaling the time
axis with a particular w value and determining the best fit by
eye. Using this technique, the best-fit parameter w can be
determined to an accuracy of approximately du= *0.01 for
the entire temperature range excluding the highest tempera-
ture. For this temperature du= *0.015. Best-fit determina-
tion of w for the simulation data provided reasonable scaling
within a range of du= *0.01. One further comment on the
scaling technique. As there was no noise intrinsic in the
simulations we were able to analyze the scaling with much
finer resolution than the experimental data. Observing the
simulation curves with high resolution shows that perfect
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FIG. 4. (Color online) Best-fit u values for various tempera-
tures. The same eight ¢,,’s are used. The applied field is still 20 G.
The measuring temperature is reached with the fast-cooling time
protocols.

overlap of the curves does not hold for any w value. These
differences would be masked if noise was present. The finer
points of implementation notwithstanding, u scaling of the
simulated data leads to several conclusions. Full aging (u
=1) was ruled out at all temperatures and subaging was ob-
served. Since aging of an initial distribution concentrated on
a single state leads to full aging, within the barrier model, we
must conclude in agreement with Ref. 8, that subaging is a
direct consequence of the distribution of states set up during
the thermal quench. The similarities between the simulations
and experiment are highly suggestive that heterogeneity is
responsible for subaging in real systems.

V. SUMMARY

In summary, we have measured the temperature-
dependent TRM decay of CuMn(6%) using fast cooling pro-
tocols. We find that the fast-cooling protocols lead to u scal-
ing values larger than previously measured values. We have
also reanalyzed the ZTRM data taken previously, at different
temperatures, in conjunction with the TRM data reported in
this paper. Extracting an initial starting magnetization M,
from the TRM data, and extrapolating the apparent logarith-
mic long-time decay back to this initial magnetization allows
us to determine a minimum-fluctuation time scale at any par-
ticular temperature. A plot of this time scale vs temperature
produces apparent Arrhenius-type behavior. Extrapolation of
this time scale to M,=0 s corresponds to the fluctuation
time scale at the transition temperature and appears to be
approaching atomic-fluctuation time scales. The conjecture
that cooling the spin glass through the transition temperature
leads to a spatially heterogeneous distribution of fluctuation
time scales provides an explanation for both the long-time
“logarithmic” decay and subaging.
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APPENDIX: SIMULATIONS ON THE BARRIER MODEL
AND DETERMINATION OF BARRIER SPACE
PARAMETERS

Using the Barrier Model, Joh et al.'® have successfully
simulated aging for a branching ratio (degeneracy factor) of
r=2. It is still an open question as to what the value of the
branching ratio actually is. Among the questions addressed in
this appendix is whether the barrier model can successfully
describe aging for systems with other branching ratios. What
are the implications on the barrier space for a system with a
smaller or larger branching ratio? Are there systematic rela-
tionships between the number of significant barriers and the
branching ratio? Joh et al.'® performed a series of calcula-
tions to model the zero-field cooled magnetization using a
system with n=20 significant barriers to probe the param-
eters r=2 and a=2. The significant barriers are those barriers
which control diffusion within the model. With these param-
eters, the occupation of states for #,=10% 10%, and 10° (in
units of attempt time), were contained within the first 20
significant barriers. They used a delta-function initial distri-
bution located at the state associated with the lowest barrier
for the initial distribution. It is generally believed that real
experimental systems such as spin glasses have extremely
large numbers of barriers. By varying the parameter «, the
slope of the significant barrier heights as a function of Ham-
ming distance can be controlled. As the “slope” of the barri-
ers heights decrease the diffusion of initial states can probe
further and further into the barrier space. In this study we set
out to probe much larger barrier spaces and the systems ana-
lyzed vary from 20 to 3000 significant barriers.

In traditional TRM/ZFC studies in spin glasses, a waiting
time dependent magnetization decay is observed. An inflec-
tion point occurs at a time approximately equal to the wait-
ing time and the function S(t):#ﬂgm exhibits a smooth
single peak function with the peak occurring near the waiting
time. Using the same initial distribution used by Joh et al.
(i.e., a delta-function distribution located at the state associ-
ated with the lowest barrier) we have probed the parameter
space (a,r) of the Barrier model. We find that for any par-
ticular value of «, not all r values give relaxations compat-
ible with known experimental results. These results can be
explained by looking at the terms in the transition matrix.
The probability for occupation of a set of states at barrier 7 is
proportional to r"e”*". The occupation of states is dependent
on two factors, 1", the state degeneracy term at barrier n, and
e~ ", For values of r too large the degeneracy of states term
tends to dominate the diffusion process and the states mi-
grate more quickly to higher barriers; hence, tf{f is larger for
a given t,,. If r is too small the states cluster at small barriers
and hence a shoulder is observed in S(7).

Using the criteria described above, we have determined
that for a given value of « there is a finite interval of r over
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FIG. 5. Range of qualitative agreement with experimentally de-
termined S(r) curves. Open circles determine lower bound. Open
triangles determine upper bound.

which the experimental data can be qualitatively reproduced.
In Fig. 5, we plot the parameter space of r, as a function of
a, that allows for S(z) curves that reasonably reproduce ex-
perimental data. In general, this plot was produced by choos-
ing a particular value of « and then probing the degeneracy
factor r. Decay curves found within these boundaries exhibit
full aging and the aging curves extend over the whole mag-
netization region (i.e., there is no logarithmic component). It
should be pointed out that the values used by Joh et al.'®
(r=2 and a=2) fall well within this region. We observe that
as « decreases, the region, of acceptable branching-ratio pa-
rameters r narrows significantly. Figure 5(b) extends the re-
gion of @ down to a=0.02. The system size at a=0.02
probed out to approximately 3000 barriers. Qualitatively,
Fig. 5(b) suggests that as a approaches a value of zero, r
appears to asymptotically approach a value of 1.

Case I: Linearly increasing barrier height
with Hamming distance

The asymptotic limits (i.e., r=1 as a—0) can be ex-
plained in terms of maintaining an approximately constant
number of states at a particular energy barrier even though «
and r may change. We will show that under a self-similarity
condition, the degeneracy, r, approaches unity in the limit of
a approaching zero. The self-similarity condition maintains
that within the model similar behavior occurs on all size and
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energy scales and that the only relevant parameter is the time
t,, under which the system is allowed to evolve. In particular,
the change in the number of states at some energy barrier N
should be proportional to the change in barrier height at N.
The proportionality constant is dependent only on N and not
on the relationship of the barrier height to the Hamming
distance or other features of the manifold.

We define a general barrier density of states at barrier N as

D(A) = dn

dA’ (Al

where n is the number of states at barrier N. Let us assume
that for a given parameterization of the barrier space reason-
able aging effects exist. For example, using parameters «;
and r; reasonable S(7) curves are generated and the barrier
density of states is centered on a most probable barrier num-
ber N;. Using the approximation

dn on

= A2
dA  6A (42)

it follows that
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Il Il
D(A) = — =k, T—,
A, @

(A3)

where V1 is the number of states associated with significant
barrier Ny and A is the size of the energy increment between
significant barriers.

Now consider a second system, at the same temperature,
with barrier separation defined by «,, branching ratio r,, and
most probable barrier number N,. Under the self-similarity
condition we require that

Dy(A)) =Dy(4y) (A4)
leading to
i V2
kgT— = kgT—. (A5)
@) @
From this equation we obtain the expression
N 1
In(ry) = ~In(r,) + —1n<ﬂ). (A6)
N, Ny \a

In the model, decreasing «, has the effect of decreasing
the slope of increase in the significant barriers. Therefore,
during the waiting time, the initial state will diffuse over a
larger number of significant barriers to reach the most prob-
able barrier N,. In the limit that a,— 0 the most probable
barrier N, — . Therefore, under the condition —In a, <N,,
as a,—0 the value of the branching ratio r, — 1.
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